Adipocyte ATP-binding cassette G1 promotes triglyceride storage, fat mass growth, and human obesity.
نویسندگان
چکیده
The role of the ATP-binding cassette G1 (ABCG1) transporter in human pathophysiology is still largely unknown. Indeed, beyond its role in mediating free cholesterol efflux to HDL, the ABCG1 transporter equally promotes lipid accumulation in a triglyceride (TG)-rich environment through regulation of the bioavailability of lipoprotein lipase (LPL). Because both ABCG1 and LPL are expressed in adipose tissue, we hypothesized that ABCG1 is implicated in adipocyte TG storage and therefore could be a major actor in adipose tissue fat accumulation. Silencing of Abcg1 expression by RNA interference in 3T3-L1 preadipocytes compromised LPL-dependent TG accumulation during the initial phase of differentiation. Generation of stable Abcg1 knockdown 3T3-L1 adipocytes revealed that Abcg1 deficiency reduces TG storage and diminishes lipid droplet size through inhibition of Pparγ expression. Strikingly, local inhibition of adipocyte Abcg1 in adipose tissue from mice fed a high-fat diet led to a rapid decrease of adiposity and weight gain. Analysis of two frequent ABCG1 single nucleotide polymorphisms (rs1893590 [A/C] and rs1378577 [T/G]) in morbidly obese individuals indicated that elevated ABCG1 expression in adipose tissue was associated with increased PPARγ expression and adiposity concomitant to increased fat mass and BMI (haplotype AT>GC). The critical role of ABCG1 in obesity was further confirmed in independent populations of severe obese and diabetic obese individuals. This study identifies for the first time a major role of adipocyte ABCG1 in adiposity and fat mass growth and suggests that adipose ABCG1 might represent a potential therapeutic target in obesity.
منابع مشابه
ABCD2 is abundant in adipose tissue and opposes the accumulation of dietary erucic acid (C22:1) in fat.
The ATP binding cassette transporter, ABCD2 (D2), is a peroxisomal protein whose mRNA has been detected in the adrenal, brain, liver, and fat. Although the role of this transporter in neural tissues has been studied, its function in adipose tissue remains unexplored. The level of immunoreactive D2 in epididymal fat is >50-fold of that found in brain or adrenal. D2 is highly enriched in adipocyt...
متن کاملAdipose-Specific Deficiency of Fumarate Hydratase in Mice Protects Against Obesity, Hepatic Steatosis, and Insulin Resistance
Obesity and type 2 diabetes are associated with impaired mitochondrial function in adipose tissue. To study the effects of primary deficiency of mitochondrial energy metabolism in fat, we generated mice with adipose-specific deficiency of fumarate hydratase (FH), an integral Krebs cycle enzyme (AFHKO mice). AFHKO mice have severe ultrastructural abnormalities of mitochondria, ATP depletion in w...
متن کاملHeat stress enhances adipogenic differentiation of subcutaneous fat depot-derived porcine stromovascular cells.
Heat stress (HS) results from excessive heat load on animals such that all adaptive mechanisms used to dissipate the heat do not return the body to normal body temperature. In pigs, HS results in increased fat deposition compared with pair-fed animals in a thermoneutral environment. Although there is evidence that HS increases activity of lipoprotein lipase (LPL) in adipose tissue of heat stres...
متن کاملFree Fatty Acids, Lipopolysaccharide and IL-1α Induce Adipocyte Manganese Superoxide Dismutase Which Is Increased in Visceral Adipose Tissues of Obese Rodents
Excess fat storage in adipocytes is associated with increased generation of reactive oxygen species (ROS) and impaired activity of antioxidant mechanisms. Manganese superoxide dismutase (MnSOD) is a mitochondrial enzyme involved in detoxification of ROS, and objective of the current study is to analyze expression and regulation of MnSOD in obesity. MnSOD is increased in visceral but not subcuta...
متن کاملRelationship between human adipose tissue agouti and fatty acid synthase (FAS).
The human homologue of the murine obesity gene, agouti, is expressed in adipose tissue. We have shown that recombinant agouti protein regulates adipocyte lipogenesis and lipolysis coordinately and promotes lipid storage via a Ca(2+)-dependent mechanism in vitro, which may contribute to agouti-induced obesity. However, little is known about agouti's physiologic function in humans. We first studi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Diabetes
دوره 64 3 شماره
صفحات -
تاریخ انتشار 2015